Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558472

RESUMEN

Genome-wide association studies (GWAS) are an effective approach to identify new specialized metabolites and the genes involved in their biosynthesis and regulation. In this study, GWAS of Arabidopsis thaliana soluble leaf and stem metabolites identified alleles of an uncharacterized BAHD-family acyltransferase (AT5G57840) associated with natural variation in three structurally related metabolites. These metabolites were esters of glucuronosylglycerol, with one metabolite containing phenylacetic acid as the acyl component of the ester. Knockout and overexpression of AT5G57840 in Arabidopsis and heterologous overexpression in Nicotiana benthamiana and Escherichia coli demonstrated that it is capable of utilizing phenylacetyl-CoA as an acyl donor and glucuronosylglycerol as an acyl acceptor. We, thus, named the protein Glucuronosylglycerol Ester Synthase (GGES). Additionally, phenylacetyl glucuronosylglycerol increased in Arabidopsis CYP79A2 mutants that overproduce phenylacetic acid and was lost in knockout mutants of UDP-sulfoquinovosyl: diacylglycerol sulfoquinovosyl transferase, an enzyme required for glucuronosylglycerol biosynthesis and associated with glycerolipid metabolism under phosphate-starvation stress. GGES is a member of a well-supported clade of BAHD family acyltransferases that arose by duplication and neofunctionalized during the evolution of the Brassicales within a larger clade that includes HCT as well as enzymes that synthesize other plant-specialized metabolites. Together, this work extends our understanding of the catalytic diversity of BAHD acyltransferases and uncovers a pathway that involves contributions from both phenylalanine and lipid metabolism.

2.
Proc Natl Acad Sci U S A ; 120(31): e2216543120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487096

RESUMEN

Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fenotipo , Regulación de la Expresión Génica de las Plantas
3.
Plant J ; 115(1): 97-107, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36995355

RESUMEN

Identification of unknown metabolites and their biosynthetic genes is an active research area in plant specialized metabolism. By following a gene-metabolite association from a genome-wide association study of Arabidopsis stem metabolites, we report a previously unknown metabolite, 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid glucoside, and demonstrated that UGT76F1 is responsible for its production in Arabidopsis. The chemical structure of the glucoside was determined by a series of analyses, including tandem MS, acid and base hydrolysis, and NMR spectrometry. T-DNA knockout mutants of UGT76F1 are devoid of the glucoside but accumulate increased levels of the aglycone. 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid is structurally related to the C7-necic acid component of lycopsamine-type pyrrolizidine alkaloids such as trachelantic acid and viridifloric acid. Feeding norvaline greatly enhances the accumulation of 2-hydroxy-2-(1-hydroxyethyl)pentanoic acid glucoside in wild-type but not the UGT76F1 knockout mutant plants, providing evidence for an orthologous C7-necic acid biosynthetic pathway in Arabidopsis despite the apparent lack of pyrrolizidine alkaloids.


Asunto(s)
Arabidopsis , Alcaloides de Pirrolicidina , Arabidopsis/genética , Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Alcaloides de Pirrolicidina/química , Alcaloides de Pirrolicidina/metabolismo , Plantas/metabolismo , Glucósidos
4.
Methods Enzymol ; 676: 279-303, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36280353

RESUMEN

Untargeted liquid chromatography/mass spectrometry (LC-MS) can contribute a comprehensive and unbiased picture of the metabolic space of plants. These data can be used to quantify natural metabolite variation for genome wide association studies, to compare global metabolic responses from environmental or genetic perturbations, and to identify previously undescribed metabolites in Nature. A major limitation with untargeted metabolomics is the classification and identification of the thousands of metabolite features that can be detected in a single analytical run. Isotopic labeling improves the informational value of these datasets by categorizing metabolites as being derived from specific upstream precursors and/or to known metabolic pathways. When a 13C-labeled precursor is fed to either a plant or tissue, the downstream metabolites produced from it have a higher m/z value than the molecules in the pre-existing pool, generating an m/z peak pair that can be specifically identified within the MS data. This paper outlines methods and principles to consider when supplementing untargeted MS data with isotopic labeling, including how to choose the appropriate isotopic label, grow and feed plant tissues to maximize label uptake and incorporation into derivatives, optimize LC-MS methods, and interpret the resulting labeling data. Although the focus here is on annotation of amino acid-derived metabolites using LC-MS, we anticipate that the methods are generally adaptable to other precursors, plant species, and chromatographic approaches.


Asunto(s)
Estudio de Asociación del Genoma Completo , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Marcaje Isotópico , Metabolómica/métodos , Aminoácidos , Plantas
5.
Plant Physiol ; 190(4): 2828-2846, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35880844

RESUMEN

Lignin, one of the most abundant polymers in plants, is derived from the phenylpropanoid pathway, which also gives rise to an array of metabolites that are essential for plant fitness. Genetic engineering of lignification can cause drastic changes in transcription and metabolite accumulation with or without an accompanying development phenotype. To understand the impact of lignin perturbation, we analyzed transcriptome and metabolite data from the rapidly lignifying stem tissue in 13 selected phenylpropanoid mutants and wild-type Arabidopsis (Arabidopsis thaliana). Our dataset contains 20,974 expressed genes, of which over 26% had altered transcript levels in at least one mutant, and 18 targeted metabolites, all of which displayed altered accumulation in at least one mutant. We found that lignin biosynthesis and phenylalanine supply via the shikimate pathway are tightly co-regulated at the transcriptional level. The hierarchical clustering analysis of differentially expressed genes (DEGs) grouped the 13 mutants into 5 subgroups with similar profiles of mis-regulated genes. Functional analysis of the DEGs in these mutants and correlation between gene expression and metabolite accumulation revealed system-wide effects on transcripts involved in multiple biological processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Lignina/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcriptoma/genética
6.
Plant Physiol ; 189(4): 2015-2028, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35522042

RESUMEN

Lignin contributes substantially to the recalcitrance of biomass toward saccharification. To circumvent this problem, researchers have genetically altered lignin, although, in a number of cases, these efforts have resulted in an undesirable yield penalty. Recent findings have shown that by knocking out two subunits (MED5A and MED5B) of the transcriptional regulatory complex Mediator, the stunted growth phenotype of mutants in p-coumaroyl shikimate 3'-hydroxylase, reduced epidermal fluorescence 8-1 (ref8-1), can be alleviated. Furthermore, these plants synthesize a lignin polymer almost entirely derived from p-coumaryl alcohol. Plants deficient in cinnamyl alcohol dehydrogenase (CAD) are notable in that they primarily incorporate coniferaldehyde and sinapaldehyde into their lignin. We tested the hypothesis that by stacking mutations in the genes encoding for the CAD paralogs C and D on an Arabidopsis (Arabidopsis thaliana) med5a/5b ref8-1 genetic background, the biosynthesis of p-coumaryl alcohol would be blocked, making p-coumaraldehyde available for polymerization into a novel kind of lignin. The med5a/5b ref8-1 cadc cadd plants are viable, but lignin analysis demonstrated that they continue to synthesize p-hydroxyphenyl lignin despite being mutated for the CADs typically considered to be required for monolignol biosynthesis. In addition, enzyme activity tests showed that even in the absence of CADC and CADD, there is high CAD activity in stems. We tested the potential involvement of other CADs in p-coumaraldehyde biosynthesis in the quintuple mutant by mutating them using the CRISPR/Cas9 system. Lignin analysis demonstrated that the resulting hextuple mutant plants continue to deposit p-coumaryl alcohol-derived lignin, demonstrating a route for the synthesis of p-hydroxyphenyl lignin in Arabidopsis independent of four CAD isoforms.


Asunto(s)
Arabidopsis , Oxidorreductasas de Alcohol/genética , Lignina , Plantas Modificadas Genéticamente
7.
Plant Cell Physiol ; 63(6): 744-754, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35275214

RESUMEN

The complexity of lignin structure impedes efficient cell wall digestibility. Native lignin is composed of a mixture of three dominant monomers, coupled together through a variety of linkages. Work over the past few decades has demonstrated that lignin composition can be altered through a variety of mutational and transgenic approaches such that the polymer is derived almost entirely from a single monomer. In this study, we investigated changes to lignin structure and digestibility in Arabidopsis thaliana in near-single-monolignol transgenics and mutants and determined whether novel monolignol conjugates, produced by a FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) or a p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (PMT), could be integrated into these novel polymers to further improve saccharification efficiency. Monolignol conjugates, including a new conjugate of interest, p-coumaryl p-coumarate, were successfully integrated into high-H, high-G and high-S lignins in A. thaliana. Regardless of lignin composition, FMT- and PMT-expressing plants produced monolignol ferulates and monolignol p-coumarates, respectively, and incorporated them into their lignin. Through the production and incorporation of monolignol conjugates into near-single-monolignol lignins, we demonstrated that substrate availability, rather than monolignol transferase substrate preference, is the most important determining factor in the production of monolignol conjugates, and lignin composition helps dictate cell wall digestibility.


Asunto(s)
Arabidopsis , Lignina , Arabidopsis/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo , Transferasas/análisis , Transferasas/metabolismo
8.
Front Plant Sci ; 12: 714164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594350

RESUMEN

The synthesis of small organic molecules, known as specialized or secondary metabolites, is one mechanism by which plants resist and tolerate biotic and abiotic stress. Many specialized metabolites are derived from the aromatic amino acids phenylalanine (Phe) and tyrosine (Tyr). In addition, the improved characterization of compounds derived from these amino acids could inform strategies for developing crops with greater resilience and improved traits for the biorefinery. Sorghum and other grasses possess phenylalanine ammonia-lyase (PAL) enzymes that generate cinnamic acid from Phe and bifunctional phenylalanine/tyrosine ammonia-lyase (PTAL) enzymes that generate cinnamic acid and p-coumaric acid from Phe and Tyr, respectively. Cinnamic acid can, in turn, be converted into p-coumaric acid by cinnamate 4-hydroxylase. Thus, Phe and Tyr are both precursors of common downstream products. Not all derivatives of Phe and Tyr are shared, however, and each can act as a precursor for unique metabolites. In this study, 13C isotopic-labeled precursors and the recently developed Precursor of Origin Determination in Untargeted Metabolomics (PODIUM) mass spectrometry (MS) analytical pipeline were used to identify over 600 MS features derived from Phe and Tyr in sorghum. These features comprised 20% of the MS signal collected by reverse-phase chromatography and detected through negative-ionization. Ninety percent of the labeled mass features were derived from both Phe and Tyr, although the proportional contribution of each precursor varied. In addition, the relative incorporation of Phe and Tyr varied between metabolites and tissues, suggesting the existence of multiple pools of p-coumaric acid that are fed by the two amino acids. Furthermore, Phe incorporation was greater for many known hydroxycinnamate esters and flavonoid glycosides. In contrast, mass features derived exclusively from Tyr were the most abundant in every tissue. The Phe- and Tyr-derived metabolite library was also utilized to retrospectively annotate soluble MS features in two brown midrib mutants (bmr6 and bmr12) identifying several MS features that change significantly in each mutant.

9.
J Am Soc Mass Spectrom ; 32(10): 2546-2551, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34463497

RESUMEN

The proportional content of the phenylpropanoid monomeric units (4-hydroxyphenyl (H), guaiacyl (G), and syringyl (S)) in lignin is of paramount importance in germ plasm screening and for evaluating the results of plant breeding and genetic engineering. This content is usually determined using a tedious and slow (2 days/sample) method involving derivatization followed by reductive cleavage (DFRC) combined with GC/MS or NMR analysis. We report here a fast mass spectrometric method for the determination of the monomer content. This method is based on the fast pyrolysis of a lignin sample inside the ion source area of a linear quadrupole ion trap mass spectrometer. The evaporated pyrolysis products are promptly deprotonated via negative-ion mode atmospheric pressure chemical ionization ((-)APCI) and analyzed by the mass spectrometer to determine the monomer content. The results obtained for the wild-type and six genetic variants of poplar were consistent with those obtained by the DFRC method. However, the mass spectrometry method requires only a small amount of sample (50 µg) and the use of only small amounts of three benign chemicals, methanol, water, and ammonium hydroxide, as opposed to DFRC that requires substantially larger amounts of sample (10 mg or more) and large amounts of several hazardous chemicals. Furthermore, the mass spectrometry method is substantially faster (3 min/sample), more precise, and the data interpretation is more straightforward as only nine ions measured by the mass spectrometer are considered.

10.
Plant Cell ; 33(3): 492-510, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955498

RESUMEN

The optimal extraction of information from untargeted metabolomics analyses is a continuing challenge. Here, we describe an approach that combines stable isotope labeling, liquid chromatography- mass spectrometry (LC-MS), and a computational pipeline to automatically identify metabolites produced from a selected metabolic precursor. We identified the subset of the soluble metabolome generated from phenylalanine (Phe) in Arabidopsis thaliana, which we refer to as the Phe-derived metabolome (FDM) In addition to identifying Phe-derived metabolites present in a single wild-type reference accession, the FDM was established in nine enzymatic and regulatory mutants in the phenylpropanoid pathway. To identify genes associated with variation in Phe-derived metabolites in Arabidopsis, MS features collected by untargeted metabolite profiling of an Arabidopsis diversity panel were retrospectively annotated to the FDM and natural genetic variants responsible for differences in accumulation of FDM features were identified by genome-wide association. Large differences in Phe-derived metabolite accumulation and presence/absence variation of abundant metabolites were observed in the nine mutants as well as between accessions from the diversity panel. Many Phe-derived metabolites that accumulated in mutants also accumulated in non-Col-0 accessions and was associated to genes with known or suspected functions in the phenylpropanoid pathway as well as genes with no known functions. Overall, we show that cataloguing a biochemical pathway's products through isotopic labeling across genetic variants can substantially contribute to the identification of metabolites and genes associated with their biosynthesis.


Asunto(s)
Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Metaboloma/fisiología , Arabidopsis/genética , Marcaje Isotópico , Espectrometría de Masas , Metaboloma/genética , Metabolómica/métodos , Estudios Retrospectivos
11.
J Exp Bot ; 72(8): 3061-3073, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33585900

RESUMEN

Cinnamate 4-hydroxylase (C4H) is a cytochrome P450-dependent monooxygenase that catalyzes the second step of the general phenylpropanoid pathway. Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, which carry hypomorphic mutations in C4H, exhibit global alterations in phenylpropanoid biosynthesis and have developmental abnormalities including dwarfing. Here we report the characterization of a conditional Arabidopsis C4H line (ref3-2pOpC4H), in which wild-type C4H is expressed in the ref3-2 background. Expression of C4H in plants with well-developed primary inflorescence stems resulted in restoration of fertility and the production of substantial amounts of lignin, revealing that the developmental window for lignification is remarkably plastic. Following induction of C4H expression in ref3-2pOpC4H, we observed rapid and significant reductions in the levels of numerous metabolites, including several benzoyl and cinnamoyl esters and amino acid conjugates. These atypical conjugates were quickly replaced with their sinapoylated equivalents, suggesting that phenolic esters are subjected to substantial amounts of turnover in wild-type plants. Furthermore, using localized application of dexamethasone to ref3-2pOpC4H, we show that phenylpropanoids are not transported appreciably from their site of synthesis. Finally, we identified a defective Casparian strip diffusion barrier in the ref3-2 mutant root endodermis, which is restored by induction of C4H expression.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Propanoles/metabolismo , Transcinamato 4-Monooxigenasa , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Transcinamato 4-Monooxigenasa/genética , Transcinamato 4-Monooxigenasa/metabolismo
12.
New Phytol ; 225(1): 154-168, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31408530

RESUMEN

Plants produce several hundreds of thousands of secondary metabolites that are important for adaptation to various environmental conditions. Although different groups of secondary metabolites are synthesized through unique biosynthetic pathways, plants must orchestrate their production simultaneously. Phenylpropanoids and glucosinolates are two classes of secondary metabolites that are synthesized through apparently independent biosynthetic pathways. Genetic evidence has revealed that the accumulation of glucosinolate intermediates limits phenylpropanoid production in a Mediator Subunit 5 (MED5)-dependent manner. To elucidate the molecular mechanism underlying this process, we analyzed the transcriptomes of a suite of Arabidopsis thaliana glucosinolate-deficient mutants using RNAseq and identified misregulated genes that are rescued by the disruption of MED5. The expression of a group of Kelch Domain F-Box genes (KFBs) that function in PAL degradation is affected in glucosinolate biosynthesis mutants and the disruption of these KFBs restores phenylpropanoid deficiency in the mutants. Our study suggests that glucosinolate/phenylpropanoid metabolic crosstalk involves the transcriptional regulation of KFB genes that initiate the degradation of the enzyme phenylalanine ammonia-lyase, which catalyzes the first step of the phenylpropanoid biosynthesis pathway. Nevertheless, KFB mutant plants remain partially sensitive to glucosinolate pathway mutations, suggesting that other mechanisms that link the two pathways also exist.


Asunto(s)
Arabidopsis/enzimología , Glucosinolatos/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Propanoles/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mutación , Fenilanina Amoníaco-Liasa/genética , Proteolisis
13.
J Exp Bot ; 70(21): 5995-6003, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504746

RESUMEN

Mediator is a multisubunit transcriptional co-regulator that is involved in the regulation of an array of processes including plant metabolism. The pathways regulated by Mediator-dependent processes include those for the synthesis of phenylpropanoids (MED5), cellulose (MED16), lipids (MED15 and CDK8), and the regulation of iron homeostasis (MED16 and MED25). Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In this review, we highlight recent developments in the investigation of Mediator and plant metabolism, with particular emphasis on the large-scale biology studies of med mutants.


Asunto(s)
Complejo Mediador/metabolismo , Plantas/metabolismo , Pared Celular/metabolismo , Metabolómica , Filogenia , Subunidades de Proteína/metabolismo
14.
Biotechnol Biofuels ; 12: 171, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31297159

RESUMEN

BACKGROUND: Low-temperature swelling of cotton linter cellulose and subsequent gelatinization in trifluoroacetic acid (TFA) greatly enhance rates of enzymatic digestion or maleic acid-AlCl3 catalyzed conversion to hydroxymethylfurfural (HMF) and levulinic acid (LA). However, lignin inhibits low-temperature swelling of TFA-treated intact wood particles from hybrid poplar (Populus tremula × P. alba) and results in greatly reduced yields of glucose or catalytic conversion compared to lignin-free cellulose. Previous studies have established that wood particles from transgenic lines of hybrid poplar with high syringyl (S) lignin content give greater glucose yields following enzymatic digestion. RESULTS: Low-temperature (- 20 °C) treatment of S-lignin-rich poplar wood particles in TFA slightly increased yields of glucose from enzymatic digestions and HMF and LA from maleic acid-AlCl3 catalysis. Subsequent gelatinization at 55 °C resulted in over 80% digestion of cellulose in only 3 to 6 h with high-S-lignin wood, compared to 20-60% digestion in the wild-type poplar hybrid and transgenic lines high in guaiacyl lignin or 5-hydroxy-G lignin. Disassembly of lignin in woody particles by Ni/C catalytic systems improved yields of glucose by enzymatic digestion or catalytic conversion to HMF and LA. Although lignin was completely removed by Ni/C-catalyzed delignification (CDL) treatment, recalcitrance to enzymatic digestion of cellulose from the high-S lines was reduced compared to other lignin variants. However, cellulose still exhibited considerable recalcitrance to complete enzymatic digestion or catalytic conversion after complete delignification. Low-temperature swelling of the CDL-treated wood particles in TFA resulted in nearly complete enzymatic hydrolysis, regardless of original lignin composition. CONCLUSIONS: Genetic modification of lignin composition can enhance the portfolio of aromatic products obtained from lignocellulosic biomass while promoting disassembly into biofuel and bioproduct substrates. CDL enhances rates of enzymatic digestion and chemical conversion, but cellulose remains intrinsically recalcitrant. Cold TFA is sufficient to overcome this recalcitrance after CDL treatment. Our results inform a 'no carbon left behind' strategy to convert total woody biomass into lignin, cellulose, and hemicellulose value streams for the future biorefinery.

15.
New Phytol ; 223(1): 233-245, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30756399

RESUMEN

The Mediator complex functions as a hub for transcriptional regulation. MED5, an Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid homeostasis. A semidominant mutation (ref4-3) that causes a single amino acid substitution in MED5b functions as a strong suppressor of the pathway, leading to decreased soluble phenylpropanoid accumulation, reduced lignin content and dwarfism. By contrast, loss of MED5 results in increased concentrations of phenylpropanoids. We used a reverse genetic approach to identify suppressors of ref4-3 and found that ref4-3 requires CDK8, a kinase module subunit of Mediator, to repress plant growth. The genetic interaction between MED5 and CDK8 was further characterized using mRNA-sequencing (RNA-seq) and metabolite analysis. Growth inhibition and suppression of phenylpropanoid metabolism can be genetically separated in ref4-3 by elimination of CDK8 kinase activity; however, the stunted growth of ref4-3 is not dependent on the phosphorylation event introduced by the G383S mutation. In addition, rather than perturbation of lignin biosynthesis, misregulation of DJC66, a gene encoding a DNAJ protein, is involved in the dwarfism of the med5 mutants. Together, our study reveals genetic interactions between Mediator tail and kinase module subunits and enhances our understanding of dwarfing in phenylpropanoid pathway mutants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Quinasa 8 Dependiente de Ciclina/genética , Complejo Mediador/metabolismo , Mutación/genética , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Fenotipo , Fosforilación , Propanoles/metabolismo , Transcripción Genética
16.
Curr Opin Biotechnol ; 56: 202-208, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30677701

RESUMEN

Lignin, a polymer found in the plant secondary cell wall, is a major contributor to biomass' recalcitrance toward saccharification. Because of this negative impact toward the value of lignocellulosic crops, there is a special interest in modifying the content and composition of this important plant biopolymer. For many years this endeavor has been hindered by the plant growth inhibition that is often associated with manipulations to phenylpropanoid metabolism. Although the actual mechanism by which dwarfism arises remains unknown, recent advances in tissue-specific lignin complementation and better understanding of phenylpropanoid transcriptional regulation has made it possible to disentangle lignin modification from perturbations in plant development.


Asunto(s)
Lignina/metabolismo , Desarrollo de la Planta , Propanoles/metabolismo , Pared Celular/metabolismo , Haz Vascular de Plantas/fisiología , Plantas/anatomía & histología , Plantas/metabolismo
17.
Plant Methods ; 14: 51, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977324

RESUMEN

BACKGROUND: Metabolic fluxes represent the functional phenotypes of biochemical pathways and are essential to reveal the distribution of precursors among metabolic networks. Although analysis of metabolic fluxes, facilitated by stable isotope labeling and mass spectrometry detection, has been applied in the studies of plant metabolism, we lack experimental measurements for carbon flux towards lignin, one of the most abundant polymers in nature. RESULTS: We developed a feeding strategy of excised Arabidopsis stems with 13C labeled phenylalanine (Phe) for the analysis of lignin biosynthetic flux. We optimized the feeding methods and found the stems continued to grow and lignify. Consistent with lignification profiles along the stems, higher levels of phenylpropanoids and activities of lignin biosynthetic enzymes were detected in the base of the stem. In the feeding experiments, 13C labeled Phe was quickly accumulated and used for the synthesis of phenylpropanoid intermediates and lignin. The intermediates displayed two different patterns of labeling kinetics during the feeding period. Analysis of lignin showed rapid incorporation of label into all three subunits in the polymers. CONCLUSIONS: Our feeding results demonstrate the effectiveness of the stem feeding system and suggest a potential application for the investigations of other aspects in plant metabolism. The supply of exogenous Phe leading to a higher lignin deposition rate indicates the availability of Phe is a determining factor for lignification rates.

18.
Metab Eng ; 49: 36-46, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30025763

RESUMEN

Lignin is a polymer that significantly inhibits saccharification of plant feedstocks. Adjusting the composition or reducing the total lignin content have both been demonstrated to result in an increase in sugar yield from biomass. However, because lignin is essential for plant growth, it cannot be manipulated with impunity. Thus, it is important to understand the control of carbon flux towards lignin biosynthesis such that optimal modifications to it can be made precisely. Phenylalanine (Phe) is the common precursor for all lignin subunits and it is commonly accepted that all biosynthetic steps, spanning multiple subcellular compartments, are known, yet an in vivo model of how flux towards lignin is controlled is lacking. To address this deficiency, we formulated and parameterized a kinetic model based on data from feeding Arabidopsis thaliana basal lignifying stems with ring labeled [13C6]-Phe. Several candidate models were compared by an information theoretic approach to select the one that best matched the experimental observations. Here we present a dynamic model of phenylpropanoid metabolism across several subcellular compartments that describes the allocation of carbon towards lignin biosynthesis in wild-type Arabidopsis stems. Flux control coefficients for the enzymes in the pathway starting from arogenate dehydratase through 4-coumarate: CoA ligase were calculated and show that the plastidial cationic amino-acid transporter has the highest impact on flux.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Lignina/biosíntesis , Modelos Biológicos , Fenilpropionatos/metabolismo , Tallos de la Planta , Arabidopsis/citología , Arabidopsis/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/metabolismo
19.
G3 (Bethesda) ; 8(9): 3093-3108, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30049745

RESUMEN

The Mediator complex is a central component of transcriptional regulation in Eukaryotes. The complex is structurally divided into four modules known as the head, middle, tail and kinase modules, and in Arabidopsis thaliana, comprises 28-34 subunits. Here, we explore the functions of four Arabidopsis Mediator tail subunits, MED2, MED5a/b, MED16, and MED23, by comparing the impact of mutations in each on the Arabidopsis transcriptome. We find that these subunits affect both unique and overlapping sets of genes, providing insight into the functional and structural relationships between them. The mutants primarily exhibit changes in the expression of genes related to biotic and abiotic stress. We find evidence for a tissue specific role for MED23, as well as in the production of alternative transcripts. Together, our data help disentangle the individual contributions of these MED subunits to global gene expression and suggest new avenues for future research into their functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Complejo Mediador , Mutación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo
20.
Plant Cell ; 29(12): 3269-3285, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29203634

RESUMEN

The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana, disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 (ref4-3) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Epistasis Genética , Complejo Mediador/genética , Propanoles/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Supresores , Lignina/metabolismo , Malatos/metabolismo , Complejo Mediador/química , Complejo Mediador/metabolismo , Mutación Missense/genética , Fenotipo , Fenilpropionatos/metabolismo , Solubilidad , Estrés Fisiológico/genética , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...